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Ferromagnetism in the Nearly-Half-Filled-Band Hubbard Model at Nonzero Temperatures
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(Received 13 July 1970)

Nagoaka’s result that the ground state of the near-neighbor-hopping Hubbard model, for a
nearly half-filled band and for interaction strength much greater than hopping energy, is ferro-
magnetic, is shown to be valid for bosons with spin, as well as fermions, in a finite system.

In the thermodynamic limit, the boson system is shown to be nonmagnetic. Ferromagnetism
is argued to exist at nonzero temperatures for fermions in an infinite system, and upper and

approximate lower bounds are obtained for the Curie temperature.

Nagaoka has shown that the near-neighbor-hop-
ping Hubbard model, ! with infinite-interaction en-
ergy, has a ferromagnetic ground state if the band
contains one less than one electron per lattice site.?
In the infinite-interaction limit, the Hubbard Hamil-
tonian reduces to

=23 hy; aly azq, (1)
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where hy;=h if i and j are near neighbors, and zero
otherwise, and where

_ _t
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where ¢, is an annihilation operator for an electron
of spin ¢ on site i. %4 Nagaoka’s proof depends on
considering the motion of the “hole” (i.e., site not
containing an electron) over all possible paths over
which it may hop. The number of paths contributing
to Nagaoka’s Green’s function, involving a given
number of hops of the hole, does not depend on the
fact that we have fermions, but only on the fact that
we have a variable such as spin which makes some
particles distinguishable. Therefore, Nagaoka’'s
result should also be applicable to bosons with spin.
Thus, we have a case of ferromagnetism not caused
by the Pauli exclusion principle either directly or
indirectly.

At nonzero temperatures, we consider the canon-
ical partition function in order to discuss the mag-
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netic properties of the system. If we write the par-
tition function as

z=3Ga|e*|iay=2 ¥ (ia|(- B50)"/nl |ia),  (2)
ia ic m=0

where 7 is the position of the hole and « is the spin
configuration, we can see using Eq. (1) that a term
of order # in Eq. (2) can be found by finding the

total number of paths in which in » hops the hole re-
turns to the site 7 and at the same time returns the
spins to their original configuration a. It is easy

to see that for simple-cubic (sc) and bec lattices
only even terms contribute to Eq. (2) and hence all
terms are positive. For afcc lattice, alltermsare
positive if >0. We will assume all terms positive
in this discussion. If we have N, “holes” in the sys-
tem whose concentration is sufficiently small that
their paths do not intersect (i.e., N,«N,, the num-
ber of atoms), Eq. (2) becomes

Np

2= % {ie|T} 2 CBE

ila 1=

{i}a>, (3)

where {i} denotes the locations of the N, holes.

(This is easily shown by dividing the hops contribut-
ing to the nth-order term among the N, holes in all
possible ways.) Since we expect the Curie temper-
ature to be small for very low densities, we will
consider KT < k in this discussion. Each factor in
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the product over ! in Eq. (3) will give a contribution
equal to the number of paths of a “hole” which in
the end return the hole to its original site and re-
turn the spins of the system to their original con-
figuration after n, hops. As pointed out in Ref. 5
(in which we treat this same system away from the
N,<< N, limit) when the “hole” paths do overlap,
there are also exchange paths in which two or more
“holes” exchange places. Each exchange path which
involves interchange of an odd number of “holes”
will appear with a negative sign for the fermion
case and will be equal in magnitude to at least one
of the nonexchange paths. For example, it will be
equal to a path in which one hole travels over the
same sites as in the exchange path and the other
holes remain stationary. Thus, each “exchange”-
path contribution will cancel one nonexchange-path
contribution, and thus the remaining nonexchange-
path contributions will all be positive. Using Eq.
(9) in Ref. 5 and performing a saddle point integra-
tion over the kK’s, we find at low temperatures for
all spins aligned for fermions

Z=~exp|pize(K)], (4)

where the summation is taken over the N, lowest
values of k. For small hole densities, this be-
comes

Z = exp{B[Nyzh — N, 2(3/4m)?/® nbC¥ *]} | (5)

where C is the “hole” concentration (C=N,/N,) and
b= (2m)? for sc and 4(2r)% for fcc and bece lattices.
This approximation is good if KT is much less than
the height of the Fermi level. When all spins are
aligned, all paths which return the holes to their
original configuration contribute. For the para-
magnetic state, inwhichall electron spins are not
the same, since only paths in which the spins are
returned to their original configuration in the end
are allowed, there are fewer paths. Hence, the
contribution to each term in the expansion of Z in
powers of B in Eq. (3) before taking the trace over
spin configurations is smaller in a nonmagnetic
state than in the ferromagnetic state. This expan-
sion must then be summed and multiplied by 2”9,
the number of spin configurations of net spin equal
to zero. (N, is the number of electrons in the sys-
tem.) At sufficiently low temperatures, the differ-
ence in the contributions to Z obtained by summing
the total number of possible paths without taking the
trace in the ferromagnetic and paramagnetic states
becomes sufficiently large to make the partition
function for the ferromagnetic state dominate over
that for the paramagnetic state. Thus if N, is fi-
nite, the system becomes ferromagnetic at suffi-
ciently low 7. Strictly speaking, T only has the
meaning of temperature in an infinite system. What
we have obtained thus far is an alternate proof that
the system has a ferromagnetic ground state, which

is easier to see through physically than Nagaoko’s
proof. In this proof, we can see that ferromagne-
tism comes about because of a reduction in the num-
ber of possible “hole” paths in a nonferromagnetic
state. In the thermodynamic limit, the fact that the
ground state is ferromagnetic does not lead to long-
range ferromagnetic order for 7+ 0 in a two-dimen-
sional lattice, ® but short-range order is possible.
In three dimensions, the system most likely does
order since the spin fluctuations discussed in Ref. 6
are probably not sufficient to destroy the magnetic
order at low temperatures. This can be seen
roughly by considering that the low-lying excita-
tions of the system involving spin flip are spin
waves, whose energy goes as the square of the wave
vector, 2 which leads to the well-known T/ 2 reduc-
tion in the magnetization in three dimensions at low
temperatures (i.e., T<T,). Thus, ferromagnetism
does exist in three dimensions at nonzero tempera-
tures.

In the case of bosons with spin, if we divide the
system into a few large, completely ferromagnetic
regions each having different spin (e.g., two re-
gions, one of spin up and one of spin down) and place
the “holes” in one of these regions, the number of paths
of n hops of each “hole” will approach the value that
it would have if all spins were aligned, as we take
the thermodynamic limit. (Remember that each
such region becomes infinitely large in this limit.)
Thus, the partition function will have the same val-
ue as it did in the ferromagnetic state, or larger
and therefore, there will be no ferromagnetism in
the thermodynamic limit for bosons. In the case
of fermions, we cannot pack many “holes” into the
same region of “volume” because the exchange
paths, in which two “holes” exchange places, will
reduce the partition function since they contribute
with a negative sign in Eq. (2), thus making Z lower
than if they were not confined to specific regions.

It is possible to obtain an upper bound to the
Curie temperature. Consider the system to be in
a state not having all spins aligned. At low tem-
peratures, the contributions which dominate Z in
Eq. (3) will be from those spin arrangements in
which each “hole” is surrounded by electrons having
the same spin. Actually, if the regions are cubic,
then the energy is lowest if there are two “holes” in
such a same-spinregion, but the results are not
changed significantly by assuming one electron in
each region. These arrangements can be shown to
give the lowest “hole” energy, as they give rise to
so-called “band-tail” states.” The electrons are
divided evenly among the holes, and each hole will
be taken to be at the center of a cube containing C*
electrons, where C=N,/N,. Consider the n,th-order
term in Eq. (7) of Ref. 5. Clearly, if n, is less
than $C"'/3% the small radius of such a cube, the re-
sult for that term will be the same as in the state
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with all spins aligned. Then, the »n;th-order term
gives a contribution

1 .0 e
— 1 € 1
2 B e(Ry,
which is dominated by the K=0 term,
__1_ ny 6
- (Bzh) (6)

as T—0. Forph>1, the summationover#; isdom-
inated by the term »,=8hkz, with a standard devia-
tion= (Bhz)*/% where z is the number of near neigh-
bors. (This is because the terms in the summation
represent essentially a Poissen distribution. )
Hence, the system will certainly become paramag-
netic above a temperature given by

Bzh=3C /3
or
KTo=2hzCY3, (7

An approximate lower limit can be placed on T,
as follows: Assume that in the paramagnetic state
each hole is surrounded by ac™! same-spin elec-
trons, where O<a<1. We proceed as in Eq. (7) of
Ref. 5. Once n; becomes greater than the radius
of this region containing aC™! holes, there are re-
strictions on the summation in Eq. (7) of Ref. 5.
To get an estimate on the lower bound to 7,, let us
assume for simplicity that the “hole” cannot hop out
of this region. Although this reduces the number
of possible “hole” paths more than is necessary,
this can be made up for by increasing the size of the
region slightly (i.e., increasing «). This restric-
tion is equivalent to a boundary condition that the
“hole” wave function vanish at the boundary of the
region. Then expressing %;; as in Ref. 5, with the
Fourier series defined on this region with aC™?
electron sites, we must obtain for each factor in
the product over 7 in Eq. (3) the result for a parti-
cle in a box containing «C™! sites which is, if aC™!
> 1,

exp{phz(1 - @/z)(C/a}]} (®)

for pr>1, where a is a numerical factor depending
on the shape of the region {-hz[1 -(a/2)(C/a)¥?]
is the lowest “hole” energy}. We proceed in the
same way for the other holes, take the product of
the results, and multiply by the number of possible
spin arrangements consistent with each hole being
surrounded by aC™ same-spin sites. (This includes
counting all possible directions of the total spins of
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these regions and all possible spin arrangements
of the spins not in the regions.) The final result is

Z = (a/C)"aC2Na1-)exp{BN C[1 -(@/z)(C/ay*] hz}.
9)
To obtain a lower bound for T,, we set Eq. (9)
equal to Eq. (5). Then we obtain

KT - Cha(C/a)*'® - §(3/4m)*/3 hbC*/3
¢~ Cln(a/C)+(1-a)ln2

5 hc5/3
~ In2

[a-3(3/4m)%%]). (10)

Since spherical regions seem to give the lowest
ground-state energy for this particle in a box prob-
lem, we use the value of a for a spherical region,
i.e., a=1(4n/3)¥ 3. Insetting Eq. (9) equal to Eq.(5),
we have made two errors which have opposite ef-
fects on Z. First of all, KT, is not much smaller
than the Fermi energy; rather they are of the same
order of magnitude. Then, Eq. (4) gives a parti-
tion function for the completely ferromagnetic state
at T, which is too small. Second, the system is
certainly not completely magnetically ordered just
below 7., as assumed here. This error makes Z
too large. Nevertheless, Eq. (10) should still be

a good order of magnitude estimate of T, for low
“hole” concentrations, i.e., a nearly half-filled
band.

The assumption used in this calculation that each
hole is surrounded by a sphere of same-spin elec-
trons will break down when the second term in the
exponent of Eq. (8) is equal to or greater than one-
half the first. At this point the treatment in Ref. 5
becomes a better approximation. By a simple cal-
culation we find that this occurs when C= 0. 02 for
se, bee, and fec lattices.

If instead of having misaligned spins we had im-
purities with infinite potentials, the holes would be
restricted to nonimpurity sites which is a more re-
strictive set of paths than we have in this paper.
But both in the Hubbard model and the impurity
problem, the restriction of particles to certain
paths in the lattice results in eigenvalues which
cannot be labeled by a wave vector K. In the case
of the infinite-U Hubbard model, unlike the impu-
rityproblem, itis not a potential alone which re-
stricts the hole’s motion, but rather the require-
ment that all spins be returned to their original
configuration in the calculation of the partition func-
tion or Green’s function.
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ence is {s*(- §), 3¢, S *(@1}), which can be found using
Eq. (1) of this paper to go as ¢%. This implies that there
is no long-range order in two dimensions.

PHYSICAL REVIEW B

VOLUME 4,

'W. F. Brinkman and T. M. Rice, Phys. Rev. B2,

1324 (1970); W. F. Brinkman (private communication).

NUMBER 1 1 JULY 1971

Electric-Field-Induced Quadrupole Splittings of Li” Nuclear Magnetic Resonance in KCI: Li*t

David M. Irwin* and R. M. Cotts
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14850
(Received 8 February 1971)

The electric-field-induced quadrupole splitting of the nuclear magnetic resonance of the
off-center impurity ion 1i” has been observed in KCl: Li*. Observations of the dependence
of the quadrupole splitting upon applied electric field in the [110] direction and upon orienta-
tion of the dc magnetic field confirm the value of the quadrupole coupling constant determined
by Alderman and Cotts as well as the (111) tunneling model for the Li ion.

Before the observation! of stress-induced quad-
rupole splitting of Li’ NMR in KC1:Li*, an un-
successful attempt was made to observe the split-
tings induced by a static electric field. Since the
completion of the stress experiment and in view of
other experiments®'® which demonstrate the val-
idity of the (111) tunneling model of Gomez, Bowen,
and Krumhansl? (GBK), efforts to observe the elec-
tric-field-induced splitting were resumed. We
have now observed this splitting in samples pre-
pared with special care and annealed to keep inter-
nal strains to a minimum.

The functional form of the energy levels of the
Li* ion in KC1 with an electric field applied has been
calculated by a number of authors.2-® The electric
field term in the Hamiltonian is 30z = - 1 - E,, where
TL is the elec_:.triC dipole moment of the off-center
Li* ion and E, is the applied field. The most ac-
curate measure of u and A, the level spacing of
the ground-state multiplet, has been made by
Herendeen and Silsbee who find, for Li", u=5.6
+£0.2%10*® esu cm and A=0.77+0.03 cm™,

The expected value of the electric-field-induced
quadrupole splitting is calculated using the same
formalism given in Alderman and Cotts.! The
average value of the electric-field-gradient (EFG)
tensor in the crystal axis coordinate system is

<°‘—’.I>:Z-l Z:u e'E“ / kT V,_’, , (1)
where

Z=Z>u e-Eu/kT ,
Vo= [YXHV (DY, (P ddr,

and the ¥, (T) are the exact eigenfunctions of the

impurity-ion wave function in the presence of an
electric field. The ¥, can be expressed in terms
of the basis state functions ¥, of the (111) tunneling
model of GBK:

‘I’u:Zn Crutn » (2)

where n is summed over the eight well sites. The
EFG tensor V'(Y¥) is the sum of well-site tensors
V. which have been transformed to a common coor-
dinate system, the crystal axes (x’,y’,z") shown

in Fig. 1. As in other work, it is assumed that the
Y, are highly localized on each well site and only
the “edge” overlap integrals* are important in the
ground-state multiplet. The experiment is done
for only one direction of the applied field EO parallel
to the [110] direction. Solutions to the (111) tun-
neling model predict that at sufficiently low tem-
peratures a nonzero { V') is predicted. Inaddition,
the resulting quadrupole splittings depend upon the
direction of E; and the applied dc magnetic field
used in the nuclear-magnetic-resonance (NMR) ex-

FIG. 1. Crystal axis co-
ordinate system («’, y’, 2’)
and (111) potential well
sites symmetrically located
g about vacant cation lattice
site. Site labels are the
same used by Gomez et al.
in Ref. 4.
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